
2476 /. Am. Chem. Soc. 1984, 106, 2476-2477 

400 500 600 700 

Wavelength, nm 
400 500 600 

Wavelength, nm 

Figure 1. (A) Absorption spectra of 2 x 10"3M DHP vesicle-entrapped 
1 X 1(T3 M Cd2+ and approximately 3.2 X 10"5 M Rh3+: (—) after 
removal of external cations, (•••) after exposure to H2S (formation of 
CdS), (—•) after 60 min of UV irradiation (formation of Rh0). (B) 
Fluorescence emission spectra of 2 x 10"3 M DHP vesicle-entrapped 1 
XlO-4M colloidal CdS, under 330-nm excitation: (—) in the absence 
(before and after UV irradiation under Ar bubbling) (- - -) and in the 
presence of approximately 3.2 X 10~5 M Rh3+. 
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Figure 2. Stern-Volmer plots for the quenching of 2 X 10"3 M DHP 
vesicle-entrapped 1 X 10"4 M colloidal CdS by coentrapped MV2+ (O), 
coentrapped Rh3+ (D), and externally adsorbed MV2+ (•). 
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Figure 3. Hydrogen production in deaerated solution as a function of 
irradiation time using 350-nm cutoff and water filters at 30 0C. Plotted 
are the amount of hydrogen produced by a 25-mL DHP vesicle solution 
and measured in the gas phase (16 mL) by GPLC: 2 X 10"3M DHP, 
1 X 10"4 M CdS, rhodium coated as described in the text. In the pres­
ence of 10"3 M PhSH and at pH approximately 7, adjusted before irra­
diation (•, O; separate samples, indicating our reproducibility); same 
sample in the absence of CdS and Rh (+) or in the absence of Rh only 
(•) or in the absence of PhSH only (D). 

by varying the initial concentration of CdCl2 from 0 to 7 X 10"4 

M. Irradiation of degassed, vesicle-entrapped, rhodium-coated, 
colloidal CdS by visible light (450-W xenon lamp, 350-nm cutoff 
filter) in the presence of 10"3 M PhSH resulted in hydrogen 
formation, which could be sustained for approximately 48 h 
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Figure 4. An idealized model for CdS-sensitized water photoreduction 
by PhSH in aqueous DHP vesicles. The position of the colloid in the 
vesicles should not be taken for granted, however. 

(Figure 3). After 48 h, more than 90% of PhSH was consumed. 
Sustained hydrogen formation is the consequence of electron 
transfer from PhSH, presumably located in the DHP membranes, 
to the positive holes in the colloidal CdS. This, in turn, diminishes 
undesirable electron-hole recombinations and allows electron 
transfer to the surface of the semiconductor where Rh°-catalyzed 
water reduction occurs (Figure 4). In the absence of either CdS, 
Rh0, or PhSH, no or very little amount of H2 is produced. Op­
timization of surfactant vesicle-entrapped catalyst-coated semi­
conductors is the objective of our current scrutiny. These systems, 
along with polymer membrane incorporated semiconductors,14,15 

may well provide means for viable solar energy conversion. 
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Following the establishment of the role of squalene and more 
specifically (3S)-squalene 2,3-epoxide2,3 in the biosynthesis of 
polycyclic triterpenoids, we have found that there has been con­
siderable interest and speculation concerning the exact nature of 
this remarkable biotransformation. The cyclization was originally 
envisaged as a completely concerted process,4 a view supported 
by the failure to trap or otherwise detect any intermediates. 
However, the most recent work of van Tamelen and his co-workers 
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Scheme I 

suggests that the cyclization proceeds via a series of discrete, 
conformationally rigid carbocationic intermediates.5 

We now report the isolation from gum mastic of a novel bicyclic 
triterpenoid, 2,6 the structure and absolute stereochemistry of 
which are fully consistent with its formation by interception of 
the bicyclic carbocation 1 postulated as an intermediate in the 
cyclization of the chair-chair-boat conformation of (3S)-squalene 
2,3-epoxide. Significantly, gum mastic also contains a range of 
normal tetracyclic (dammarane, tirucallane) and pentacyclic 
(lupane, oleanane) triterpenoids. It is interesting to note that the 
bicyclic diol 2 has the same formal relationship to the C-8 car­
bocation 1 as the dammarenediols (4) have to the C-20 carbocation 
3 (Scheme I). 

Gum mastic is an abundantly available resin obtained from the 
Mediterranean shrub Pistacia lentiscus L;7 it has been extensively 
used as a varnish for paintings.8 After extensive chromatography 
of the neutral fraction9 from gum mastic, we have now isolated, 
as the third most abundant component (ca. 1.3% of the total resin), 
compound 2 as a gum. The 400-MHz 1H NMR spectrum of 2 
showed the presence of four methyl singlets (S 0.77, 0.80, 1.00, 
and 1.14), four vinylic methyl groups (5 1.60, 1.60, 1.61, and 1.68), 
a proton geminal to a hydroxy group (<5 3.32, dd, / = 6 and 9 Hz), 
and three vinylic protons (<5 5.10, 5.12, and 5.17). Treatment with 
acetic anhydride in pyridine at room temperature readily afforded 
a monoacetate, C32H54O3 (MS and CI-MS). Comparison of the 
13C NMR spectra of the bicyclic diol 2 and its derivatives with 
spectra of authentic samples of ambrein, sclareol, and all-
?/ww-squalene conclusively established the structure, 2, of the diol. 
The absolute configuration was established as follows: oxidation 
of the bicyclic diol 2 (pyridinium chlorochromate-CH2Cl2) gave 
the ketol 5 (99%), which upon Wolff-Kischner reduction afforded 
the 3-desoxy derivative 6 (63%). Finally, two-phase oxidation 
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of (6) (KMnO4-H2CVPhH-K-Bu4N
+Br; room temperature) gave 

(+)-ambreinolide (7), mp 143-144 0C, [a]D 4-33° (c 0.45 in 
CHCl3), identical in every respect with an authentic sample.10 

While other partially cyclized triterpenoids have been described, 
these normally appear to be products of aberrant modes of cy­
clization11 (or laboratory synthesis12). One example is the 
aforementioned ambrein, in which partial cyclization has occurred 
at both ends of the squalene chain. In contrast, the diol 2 is the 
first6 example of a bicyclic triterpenoid that retains all of the regio-
and stereochemical features necessary for continued cyclization 
and occurs in a system that clearly has the enzyme(s) needed for 
more complete cyclization. 
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Free-base porphyrins and metalloporphyrins have been well 
established as sensitizers of singlet oxygen in photooxidation 
processes.2"4 They are also implicated as photosensitizers in a 
number of photobiological processes such as the genetic disorder 
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